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In this paper we describe a Monte Carlo sampling scheme for the Ising model
and similar discrete-state models. The scheme does not involve any particular
method of state generation but rather focuses on a new way of measuring and
using the Monte Carlo data. We show how to reconstruct the entropy S of the
model, from which, e.g., the free energy can be obtained. Furthermore we
discuss how this scheme allows us to more or less completely remove the effects
of critical fluctuations near the critical temperature and likewise how it reduces
critical slowing down. This makes it possible to use simple state generation
methods like the Metropolis algorithm also for large lattices.
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1. INTRODUCTION

The Lenz–Ising model of ferromagnetism has been thoroughly studied
since its conception in the 1920’s. It was solved in the 1-dimensional case
by Ising himself in 1925 (1) and in the 2-dimensional case without an exter-
nal field by Onsager in 1944. (2) For an introduction to the model, see ref. 3.
The partition function of the model is in general notoriously hard to
compute. It is defined for a graph G on n vertices and m edges as

Z(G; x, y)=C
i, j

ai, jx iy j. (1)



Here ai, j is the number of induced subgraphs of G on (n+j)/2 vertices
with (m − i)/2 edges at the boundary. We refer to the index i as the energy
level and j as the magnetisation. The traditional partition function studied
in statistical physics is then obtained by evaluating it at a certain point

Z(G; eK, eH),

where K=J/kBT, H=h/kBT, and J and h are parameters describing the
interaction through edges and with an external magnetic field respectively,
T is the temperature and kB is the Boltzmann constant. In order to simplify
our presentation we henceforth set J=kB=h=1. From the partition
function we obtain various quantities such as the internal energy, magneti-
sation, susceptibility etc. The main goal in the study of the Ising model on
a graph G, or some family of graphs, is usually to study the model in the
vicinity of a critical temperature, denoted Tc, where the model undergoes a
phase transition and there determine the behaviour of various critical
properties.

As an alternative to actually computing the partition function, which
is hard to do, we can use sampling methods to obtain an approximation.
Standard methods of sampling include the Metropolis method, (4) the Wolff
cluster algorithm (5) and the Swendsen–Wang process; (6) for a textbook
treatment of these methods see, e.g., ref. 7.

When working with sampling methods it is natural to focus on finding
an approximation of Z as a function of the temperature T, or equivalently
the coupling K, although doing so is not necessarily the best way to obtain
detailed information about the behaviour of the model and its asymptotics.
As noted by many before us, energy and entropy are more fundamental
parameters of a thermodynamical system than temperature. See ref. 8 for a
modern treatment of the fundamentals of thermodynamics from this point
of view.

In this paper we show how to use temperature-based sampling methods
to get information about the coefficients ai, j in Eq. (1) and give some
results on the basic behaviour of our sampling scheme. We have been using
this method in practice since 1996 in a joint project to explore practical use
of graph theoretical methods in statistical physics; our experience with the
method is that it is both fast and gives reliable and detailed data for the
graphs on which we have used it. See refs. 9–11 for our first publications
based on this work. During the same period of time this way of sampling
has also been approached in a similar, but not identical, way by others, see,
e.g., refs. 12–14. Our approach is in some sense more basic since we avoid
involving any specific method of state generation in our scheme, but the
methods make use of the same underlying structures. However, we feel that
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the use of a graph theoretic language gives a clearer, in fact almost
obvious, description of the ideas used, and keeps the amount of terminol-
ogy needed at a minimum.

2. NOTATION AND DEFINITIONS

We will generalise our scheme to that of any simple graph of finite
degree. Let G be a graph on n vertices {1, 2,..., n} and m edges. If u and v
are adjacent vertices then {u, v} is an edge. To each vertex v we assign a
spin sv= ± 1 and say that the graph is in state s=(s1, s2,..., sn). In total a
graph can take 2n different states. Given a state s its energy is E(s)=
;{u, v} susv, the sum is taken over all edges {u, v} of G, and its magnetisa-
tion is M(s)=;v sv, where the sum is taken over all vertices v in G.
Sometimes we will need their normalised forms n(s)=E(s)/m and
m(s)=M(s)/n, both taking values in [ − 1, 1]. The local energy at a vertex
v is defined as d(v)=;u ¥ N(v) susv, where N(v) denotes the set of neigh-
bours of v. It is easy to see that if we flip a spin sv (i.e., change sv to − sv)
the energy will change by an amount − 2d(v) and the magnetisation will
change with − 2sv. The object under study is the partition function,
expressed as a formal (generalised) polynomial in variables x and y

Z(G; x, y)=C
s

xE(s) yM(s)=C
i, j

ai, j x i y j

which defines the coefficients ai, j. By overloading our notation we also
define the somewhat simpler-looking partition function

Z(G; x)=Z(G; x, 1)=C
s

xE(s)=C
i

aix i

which defines the coefficients ai. The coefficients ai are called the density-of-
states and constitute the very foundation of this article. Computing these
exactly can be frustratingly hard but recently we have managed to obtain
them for the 15 × 15 lattice in two variables, (9) for the 256 × 256 lattice in
one variable, (15) and in 3 dimensions for the 4 × 4 × 4 lattice in two variables
and for the 5 × 5 × 5 lattice in one variable. For larger lattices we have yet
to resort to some form of sampling method. For now, we will focus on the
one-variable case.

Using Z we can find the classical thermodynamic quantities for our
model. As usual define the free energy and the free energy per vertex as

F=
1
K

log Z, f=
1
n

F.
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The internal energy and internal energy per vertex is

U=
“

“K
log Z, u=

1
n

U.

The specific heat and specific heat per vertex is

C=K2 “
2

“K2 log Z, c=
1
n

C.

From the density-of-states we define the entropy (or log-density-of-
states)

S(n)=
log ai

n

where n=i/m. Since the ai are only defined for certain energies, e.g., i in
the sequence ..., −8, −4, 0, 4, 8,... for a graph of even degree, we make this
function defined on the whole interval [ − 1, 1] by using some form of
interpolation (usually piecewise linear).

From the derivative of the entropy we obtain the temperature. We
will, however, prefer to talk about the coupling, or inverse temperature, K.
As usual, define

K(n)=
− n
m

SŒ(n).

An alternative way to define this quantity is to use the maximum-term
method. Suppose x is a number such that

ai − kx i − k [ aix i \ ai+kx i+k

at some energy i, where k is the difference between two consecutive
energies. That is, aix i is the maximum term in the partition function
Z(G; x). Then

ai − k

ai
[ xk [

ai

ai+k
,

from which it follows, as an aside, that ai − kai+k [ a2
i , i.e., the sequence is

log-concave at energy i. Setting x=eK we get

1
k

log
ai − k

ai
[ K [

1
k

log
ai

ai+k
, (2)
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Fig. 1. Plot of S(n), SŒ(n), and Sœ(n) for the 32 × 32 lattice.

i.e., K is a number in an interval, which is assumed to narrow as our
system grows. To make the coupling properly defined we associate the
upper bound with energy i+k/2 and use linear interpolation for any other
energy. Then the following holds:

SŒ 1 i+k/2
m

2=
S 1 i+k

m
2− S 1 i

m
2

k/m
=

m
kn

(log ai+k − log ai)

=−
m
kn

log
ai

ai+k
=−

m
n

K 1 i+k/2
m

2

and so our chosen definition follows. Note especially that the coupling is a
function of the energy though it is not necessarily one-to-one.

The objective of our sampling technique is to provide data on the first
derivative of the entropy.

3. SOME THEORY

At this point we will construct a graph G with the states s of G as
vertices. Let Wi be the set of states at energy i. Say that s ¥ Wi and y ¥ Wj.
We draw an edge between s and y if y is the state obtained by flipping a
single spin of s. We are going to count the number of edges between Wi

and Wj. Given a state s let g(s, a) be the number of vertices having local
energy a. Also, let r(i, a) be the probability that a vertex has local energy a

at energy i, that is,

r(i, a)=
1

nai
C

s ¥ Wi

g(s, a).

Lemma 3.1. The total number of edges in G with one endpoint in
Wi and one endpoint in Wi+2a is

C
s ¥ Wi

g(s, −a)= C
y ¥ Wi+2a

g(y, a). (3)
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Proof. Flipping a spin having local energy − a changes the energy by
2a while reversing the sign of the local energy. The sum over all states at
energy i must be the number of edges between Wi and Wi+2a. An analogous
argument holds at energy i+2a so the sums must be equal. Note that the
relation is true also for a=0 though the flips will only result in a change of
magnetisation while the energy remains unchanged. L

Theorem 3.2. The following relation holds:

air(i, −a)=ai+2ar(i+2a, a).

Proof. We simply manipulate Eq. (3) as follows:

ai
1

nai
C

s ¥ Wi

g(s, −a)=ai+2a

1
nai+2a

C
y ¥ Wi+2a

g(y, a)

and using the definition of r the theorem follows. L

An immediate consequence is then

Corollary 3.3.

SŒ 1 i+a

m
2=−

m
2an

log
r(i+2a, a)

r(i, −a)
.

We thank one of the referees, who pointed out that this was shown
also in ref. 13 and used in ref. 12.

4. SAMPLING

With the previous section in mind, a sampling process should collect
statistics on the probabilities for each local energy, i.e., we want an
estimate r(i, a) of r(i, a). We suggest the following scheme:

1. Reset histogram: h(i, a) P 0 for all i and l.
2. Generate a state s using, e.g., the Metropolis or Wolff method.
3. Compute the energy: i P E(s).
4. For each vertex v do
5. a P d(v)

6. h(i, a) P h(i, a)+1

7. End for
8. If more samples are needed then go back to (2), otherwise stop.
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When we are satisfied with the quality of our data we note that

r(i, a) % r(i, a)=
h(i, a)

;a h(i, a)

and from this we can calculate SŒ and all quantities derived therefrom. In
order to simplify our further discussion we will often rather use the quan-
tity Ra, which is just a normalised form of r, i.e., Ra(i/m)=r(i, a). To
make Ra defined on the whole interval [ − 1, 1], rather than just points on
the form i/m, we will assume that linear interpolation is used. Note that
;a Ra(n)=1 for each energy n.

4.1. Some Details

We pause here for a moment to clarify some details. While the reader
may have the L × L × L lattice at the back of his head when reading this
article, the arguments should hold for any family of graphs having finite
bounded degree. The 2D square lattices are 4-regular so the local energy
can take the values 0, ± 2, ± 4 while for the 6-regular 3D cubic lattices the
local energy can also take the value ± 6. In general, if the graph has
maximum degree D then the local energy can only take the values
D, D − 2, D − 4,..., −D. To simplify our argument we will assume that we are
working with graphs of even degree. Flipping a spin can change the energy by
at most ± 2D. In connection with Eq. (2) above we defined the coupling as

K 1 i+k
m

2=
1

2k
log

ai

ai+2k
,

where 2k was considered the difference between two consecutive energies,
giving us a sequence of points where the coupling is defined. We extend this
definition by removing the ‘‘consecutive energies’’ condition. Doing this
should be reasonable given that we have limited ourselves to graphs of
finite degree; this ensures that the relative energy change when flipping a
spin goes to zero as n goes to infinity. Not only have we one sequence of
couplings, but D/2 such. That all these sequences approach an asymptotic
function K(n) is here taken as an axiom. From Theorem 3.2 it then follows
that

K 1 i+a

m
2=

1
2a

log
r(i+2a, a)

r(i, −a)

for a=2, 4,..., D. We will refer to them individually by subscribing them
with an a, as in Ka.
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4.2. The Sequence

After having acquired the sequences Ka, the next problem is to mold
them into one final sequence denoted Kg. There are several approaches to
this and our suggestion should be thought of as just this: a suggestion. For
a different solution, see ref. 12.

First we define the function Kg
a as

Kg
a (n)=

1
2a

log
Ra(n+a/m)
R−a(n − a/m)

for a > 0, and finally we define

Kg(n)=
1

1 − R0(n)
C

a > 0
(Ra(n)+R−a(n)) Kg

a (n),

which we will use as the estimate of K(n).

5. CONSISTENCY

How do we know if our sampled data is good? The neat thing with
this scheme is that there are built-in consistency checks. If our data is bad
then we can see it! The samples have returned estimates of the various
r(i, k). By plotting certain quotients of them we can judge their quality. As
stated in Theorem 3.2 we have

ai

ai+2a

=
r(i+2a, a)

r(i, −a)
.

Let us now suppose that our graph is 4-regular, that is, the possible values
of a are 0, ± 2, ± 4. We then have

ai

ai+4
=

r(i+4, 2)
r(i, −2)

,

ai

ai+8
=

r(i+8, 4)
r(i, −4)

.

On the other hand we have

r(i+8, 4)
r(i, −4)

=
ai

ai+8
=

ai

ai+4

ai+4

ai+8
=

r(i+4, 2)
r(i, −2)

r(i+8, 2)
r(i+4, −2)

. (4)

462 Häggkvist et al.



0.15 0.2 0.25 0.3 0.35 0.4

0.08

0.12

0.14

0.16

0.18

0.2

0.22

0.15 0.2 0.25 0.3 0.35 0.4

-0.2

-0.15

-0.1

-0.05

0.05

0.1

0.15 0.2 0.25 0.3 0.35 0.4

0.2

0.4

0.6

0.8

1

Fig. 2. Plot of 1
4 log r(i+4, 2)

r(i, −2) , k(i) and the derivative of 1
4 log r(i+4, 2)

r(i, −2) together with a correctly
sampled derivative for the 16 × 16 × 16 cube.

If we let k(i) be the difference between the left- and right-hand side of this
equation for our estimates r, then plotting k will reveal many kinds of
inconsistencies in the sampled data.

Example 5.1. Let us look at an example. In order to produce some
bad data we ran a Metropolis program on the 16-cube in the following
way. We swept through the cube in typewriter fashion using the usual
Metropolis rule to update each spin. Each sweep was continued until we
had managed to actually flip 163/2 spins. Then we made a measurement
and started a new sweep. Any experienced sampler will probably be wincing
by now.

In the leftmost part of Fig. 2 we see our approximation of K(n) from
these data. Basically the curve looks good apart from the slight dip at
n % 0.17, but this could very well be explained by sampling noise. In the
middle part of the figure we see our indicator k(i), which is clearly not
concentrated around zero for low values of n, thus indicating that our
samples are bad. In the right part of the figure we see a plot of the deriva-
tive of our approximation together with a correct sampling. Here we clearly
see a systematic deviation from the correct curve in the interval indicated as
bad by our middle plot.

This method of sampling is of course rather obviously flawed, but in
the same manner more subtle algorithmic errors will be caught, thus giving
us further confidence that we are actually sampling according to the proper
Boltzmann distribution.

6. COMMENTS AND RELATIONS TO OTHER METHODS

Normally we require Ra for a range of consecutive energies. Using,
e.g., the Metropolis method as the engine for data production, we may
need to sample at several different temperatures to obtain data for the
desired window of energies. This is of course not a problem since we may
simply add the histograms, i.e., the h(i, a), from the different temperatures.

A Monte Carlo Sampling Scheme for the Ising Model 463



Observe that it does not matter how the data are generated as long as the
distribution of Ra at each particular energy is correct. This was also realised
by de Oliviera (12) in the so-called Broad Histogram Method.

What we propose is therefore not so much a sampling method as a
book-keeping scheme for obtaining more information from our hard-
earned data. This is at the relatively small cost of adding that extra loop in
our algorithm above, and as will be seen later we can expect this extra
complexity to be compensated for by a reduction in critical slowing down.
We are thus free to choose among the most efficient state generation
methods available to us. For smaller systems this will typically be a
Metropolis algorithm and for large systems we may turn to one of the
cluster algorithms.

Though the approach is very different from that of, e.g., the single
histogram method (16, 17) there is not necessarily any conflict in combining
both methods while we are at it. We just have to keep in mind that the
single histogram method relies on sampled data from one well-chosen
temperature only and yields data at other temperatures by a transforma-
tion procedure that zooms in on the corresponding spot in the histogram.
A good comparison between different methods can be found in ref. 18
along with numerous references.

A method which is clearly related to ours is the Transition Matrix
Monte Carlo (TMMC) method of Wang and Swendsen. (18) One major dif-
ference between the methods is that in the TMMC method one does not
separate the data analysis from the state generation as we do. Indeed, given
our sampled data one can reconstruct the results of a run of the TMMC
method for any choice of flip rate dependent on only the local and total
energies which correctly samples the Boltzmann distribution. For a
generalised TMMC based on a non-local flip rate this will not be the case.
Our method can in a sense be seen as the underlying rationale for the spec-
trum of local flip rate TMMC methods. Another example of the close rela-
tion between the methods is that Eq. (4) already appears in ref. 18, in the
form of an identity for Markov chain transition probabilities.

7. CRITICAL SLOWING DOWN AND CRITICAL FLUCTUATIONS

When sampling close to the critical temperature, or energy, one typi-
cally encounters two phenomena which severely hamper sampling of dif-
ferent interesting quantities, critical fluctuations and critical slowing down.
We now wish to examine these two phenomena in the context of our
sampling scheme and demonstrate that even though the method cannot
remove them it can reduce their effect significantly.
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A third aspect, the increase in equilibration time, is not alleviated by
our scheme. Thus we must at first obtain our equilibrated system by the
usual long equilibration run and whatever model-specific methods that
might be available to speed this part up.

7.1. Critical Fluctuations

When sampling the Ising model at a fixed temperature at, or close to,
Tc one finds that many properties, such as the magnetisation and energy,
gain enormously in variance, thus increasing the number of samples needed
in order to achieve a desired accuracy. Let us examine the structure of this
variance.

Assume that we can somehow generate a series of completely inde-
pendent samples of some property M at a fixed temperature T. Having the
magnetisation and energy of our graph in mind is a good guide for our
thoughts here.

If we consider M as a random variable we can think of it as produced
by a two-step procedure: first we choose an energy i at random from the
energy distribution Pr(i | T) at temperature T and then we choose a
random value of M from its distribution Pr(M | i) at energy i.

Let us calculate the mean and variance of M.

E(M | T)=F MPr(M | T) dM=F M 1F Pr(M | i) Pr(i | T) di2 dM

=F Pr(i | T) 1F MPr(M | i) dM2 di=F E(M | i)Pr(i | T) di

=E(E(M | i) | T)).

So we find that the mean of M given T is just the mean of M at each
energy weighted by the probability for the energies, the ‘‘mean of the
means.’’ Nothing unexpected here.

Next we look at the variance.

V(M | T)=E(M2 | T) −E2(M | T)=F M2Pr(M | T) dM −E2(M | T)

=F M2 1F Pr(M | i) Pr(i | T) di2 dM −E2(M | T)

=F Pr(i | T) 1F M2Pr(M | i) dM2 di −E2(M | T)
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=F Pr(i | T) E(M2 | i) di −E2(M | T)

=F Pr(i | T) E(M2 | i) di − F Pr(i | T) E2(M | i) di

+F Pr(i | T) E2(M | i) di −E2(M | T)

=F Pr(i | T)(E(M2 | i) −E2(M | i)) di

+F Pr(i | T) E2(M | i) di −E2(M | T)

=F Pr(i | T)(E(M2 | i) −E2(M | i)) di+E(E2(M | i) | T) −E2(M | T)

=F Pr(i | T)(V(M | i)) di+E(E2(M | i) | T) −E2(E(M | i) | T)

=E(V(M | i) | T)
z

Eg

+V(E(M | i) | T)
z

Vg

.

So we see that the variance has two parts, Eg—the mean of the
variances and Vg—the variance of the means, and this is where it gets
interesting.

Let us first examine Vg. If our system undergoes a phase transition at a
temperature Tc we usually expect some observable M to have one distribu-
tion when T < Tc and another quite different distribution when T > Tc. This
means that for a temperature close to Tc our system will tend to spend part
of the time near one value of M and part of the time at a completely dif-
ferent value, depending on whether the system is at a high or low energy.
This will make Vg large since the expected value of M varies a lot at such T
and no matter how large the system is the variance at Tc will tend to remain
large, perhaps even grow. However this is completely due to the fact that
one has combined values of M from several different energies, and so our
way of bookkeeping will not suffer from this problem.

The other part of the variance, Eg, comes from the variance of M
within each energy level. If we are at an energy different from Ec, the mean
energy at Tc, this variance will actually decrease as the system grows larger,
typically as some power of the system size, and even for Ec it will be
bounded.
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Fig. 3. The variance of the magnetisation as a function of energy for the L by L square
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Example 7.1. In Fig. 3, taken from ref. 9, we can see how the
variance within a fixed energy level develops for the modulus of the mag-
netisation of square lattices of increasing side. The smaller lattices have
been computed exactly and the three larger lattices are from Monte Carlo
simulations. We can clearly see here that the variance decreases with
increasing n for all energies, even at Ec. The exact results for the magnetic
susceptibility of the square lattice would lead us to believe that the
maximum variance decays as L−1

4. In Fig. 4 we see the corresponding curves
for the simple cubic lattice.

So we see that of the two components of the critical fluctuations that
classical fixed-temperature Monte Carlo suffers from, only one, Eg, affects
our way of doing things and in fact this component will diminish when the
size of the system grows.
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Fig. 4. The variance of the magnetisation as a function of energy for the simple cubic lattice
of side L. L=4, 6, 8, 12, 16, 32, 64, 128.
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7.2. Critical Slowing Down

When running a simulation at a fixed temperature we start with a
system in some state S0 and use some procedure P(S) (Metropolis algo-
rithm, Wolff cluster algorithm or whatever our favourite might be) to gen-
erate a new state S1=P(S0) from S0, then a state S2=P(S1) and so on.
For a given simulation method P there is a number y(T) such that Sy is
considered sufficiently independent from the initial state S0 in order to
allow S0 and Sy to be used as independent samples (for a fuller discussion
of this see, for example, ref. 7). This number y(T) is called the correlation
time of our simulation and is the victim of our second crippling phenome-
non, critical slowing down.

Many properties will gain in variance as the temperature gets closer to
Tc and so the natural thing to do would of course be to collect a larger
number of samples when we are close to Tc, in order to reduce the error in
our estimates. However in order to get independent samples we must
always run our simulation for a time period which is at least the correlation
time before we make a new sample, and right at Tc the correlation time of
many sampling methods tends to grow dramatically. This sudden increase
in correlation time is known as critical slowing down.

In order to reduce the effect of critical slowing down a number of
methods have been developed to replace the basic Metropolis algorithm
near the critical temperature. Most well known are probably the Wolff
cluster algorithm and the Swendsen–Wang algorithm, both of which reduce
the correlation time compared to the Metropolis significantly. However
they are also significantly more complex than the Metropolis algorithm and
so are only of practical advantage for a large enough system, but for really
large systems they can once more be at a disadvantage due to their higher
demand for memory. The good performance of the Swendsen–Wang algo-
rithm is also restricted by the number of spin values. As shown in ref. 19
there is a q0(d) such that for the q-state Potts model on Zd with q \ q0(d)
the Swendsen–Wang algorithm has a mixing (correlation) time which is
exponential in the number of vertices. The exact value of q0 is, to the
authors’s knowledge, not yet known, but is conjectured to be equal to the
smallest q such that the d-dimensional Potts model has a first-order phase
transition.

So far this discussion of the correlation time has been focused on
temperature. How does it behave in our setting? It is of course equally
important for us to get independent samples of the properties that we wish
to study; however what we need is not independent samples at a given
temperature but rather at a given energy, and this is a fundamental differ-
ence. Even though we might have generated two states S1 and S2 which are
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clearly correlated and thus unsuitable for sampling in the temperature
setting, this will not cause us trouble as long as they are at sufficiently dif-
ferent energies. In the Ising model on a graph with maximum degree D an
energy difference 2D+1 will suffice when we are sampling local energies,
and for magnetisation we only require that we end up at different energies.

Let us take a more classical example of this idea. Let us assume that
we are studying the Ising model on some lattice and that we are interested
in three quantities, the energy, the magnitude of the magnetisation, and the
cluster size. Further assume that we are working at a temperature at which
the correlation time corresponds to three Metropolis sweeps of our lattice.
Now rather than doing three sweeps between each measurement we can do
one sweep and then measure the energy, one further sweep and then
measure the magnetisation, one further sweep and measure the cluster size,
one sweep and then measure energy, and so on. In this way we always keep
an amount of time corresponding to the correlation time between succes-
sive measurements of a given quantity, even though consecutive measure-
ments are made on correlated states.

Returning to the present setting, what we need to ensure is that within
a time y we do not expect to take two samples at the same energy. Thus we
want to find a modified correlation time yŒ(T) such that if we sample at
time intervals yŒ(T) the probability of finding two samples at the same
energy in a time less than y(T) is sufficiently small.

First of all we need to find out how many samples we can make at a
given temperature before we expect to find two samples at the same energy.
The relevant quantity here is the so-called return time of the system. The
return time r(E, T) of an energy E is the expected time before a system
starting in a state with energy E and temperature T returns to a state with
energy E, and the minimum return time, rmin(T), is the minimum value of
the return time given T, that is,

rmin(T)=min
E

r(E, T).

If we make sure that we do not take more than rmin(T) samples during
a time period of length y(T) we can expect our samples to be sufficiently
independent. This gives yŒ(T) as

yŒ(T)=
y(T)

rmin(T)
.

So we are led to consider the behaviour of rmin(T) for T close to Tc.
Finding rmin(T) exactly is probably as hard as, or harder than, solving our
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underlying model, but under rather weak assumptions about energy distri-
bution for our model we can can get a useful approximation. From the
theory of Markov chains we know that we can express rmin(T) as

rmin(T)=min
E

(Pr(E | T))−1,

and so we want to estimate the highest probability for any energy given at
a given T. If the energy distribution Pr(E | T) is reasonably close in shape
to a normal distribution we find that rmin is proportional to the standard
deviation of the energy distribution. For the particular case of the Ising
model we can thus express rmin in terms of the specific heat as

rmin(T) 3 (T2C(T))
1
2=TC(T)

1
2 .

Observe that we are using the specific heat, not the specific heat per vertex.
So for a system where the specific heat diverges at Tc we expect yŒ to

either diverge significantly slower than y or even converge to a finite value.

Example 7.2. Let us look at the Ising model on the 3-dimensional
cubic lattice. First we look at some Monte Carlo data from a Metropolis
simulation of a cubic lattice with side 64 and cyclic boundary conditions. In
Fig. 5 we have plotted the inverse minimum return time as a function of K.

0.21 0.22 0

1000

1500

2000

2500

Fig. 5. The inverse minimum return time as a function of K for the Ising model on the
64-cube.
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Fig. 6. The variance of the energy as a function of K.

We can see a strong increase in inverse return time as we get closer to Kc,
and also that the return time overall is larger for K > Kc.

In Fig. 6 we have the variance of E and in Fig. 7 we see the rescaled
quotient between rmin(K)2 and V(E | K). The quotient stays bounded
around 3 and is consistent with rmin being proportional to C

1
2. In Figs. 8

and 9 we see the corresponding quotients with rmin(K)1.5 and rmin(K)2.5,
both indicating that these exponents do not match the observed behaviour.
For this short Monte Carlo run, around 20 CPU-hours4 per value of K

4 A 160 MHz pwr2 processor was used.

after equilibration, the curve is quite noisy.
According to the standard simulation literature we have that y 3 tz,

where t is the correlation length and z the so-called dynamic exponent of
the algorithm. For the Metropolis algorithm in 3 dimensions we have that
z=2.08... (see ref. 20). For a finite lattice with side L the correlation length
is bounded by L and so we find that y 3 Lz. Similarly one finds that

c(T) 3 t
a

n,

where c is the specific heat per vertex, a is the critical exponent for c and n

is the critical exponent for the correlation length. As above, t is bounded
by L and so

c 3 L
a

n.

A Monte Carlo Sampling Scheme for the Ising Model 471



0.21 0.22 0.

2.6

2.8

3.2

3.4

Fig. 7. The quotient of rmin(K)2 and V(E | K). The curve stays bounded in the vicinity of 3
as we get closer to Kc, but sampling noise is quite strong near Kc for this short Monte Carlo
run.
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Fig. 8. The quotient of rmin(K)1.5 and V(E | K). The curve has a clear trend towards 0 as we
get close to Kc.
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Fig. 9. The quotient of rmin(K)2.5 and V(E | K). The quotient begins to diverge as we get
closer to Kc.

The specific heat is just C(T)=Ldc(T), where d is the dimension of the
lattice; in our case d=3. This gives us

yŒ 3
y

C
1
2

3
Lz

L
d+

a

n

2

=L
2z − d −

a

n

2 .

Given that a % 0.110, n % 0.63, and d=3, we find that yŒ 3 L0.49 and so
we still expect a slowing-down effect for the Metropolis algorithm, however
significantly less so than before. Given that we have ignored many con-
stants here and the simplicity of the Metropolis algorithm we expect it to
be faster in practice than many of the cluster-based algorithms with lower
values of z, unless the lattices are extremely large.

Another fact worth noting is that as the dimension increases the
exponent on L will tend to decrease, and for the Ising model we actually
expect it to become negative in high enough dimensions.

So we see that focusing on energy allows one to worry less about the
increasing correlation time near Tc and use a fast and simple algorithm for
all but the largest lattices. However this does not come without a cost. Due
to the increased variance in E we will get fewer hits per time unit on any
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given energy when we get closer to Tc and we will thus have to sample for a
longer time before we have a useful number of samples at each energy. But
since the variance of many properties is significantly smaller within an
energy level than at the corresponding temperature, as seen in the previous
discussion, this is not necessarily as troublesome as it may seem at first.
This point is exemplified in ref. 11, where as few as 10(!) samples per energy
level on a large number of levels turn out to give very nice results.

8. DISCUSSION AND EXAMPLES

In this section we will look at two quick examples where the sampling
scheme may prove itself. The first example, the 2D Ising model, will reveal
little beyond what is already well-known, apart from the usefulness of the
algorithm. The second example, however, the 5-state 2D Potts model,
should demonstrate clearly what we may achieve. Before we proceed, a
short discussion of what we cannot achieve is necessary.

A quantity commonly studied at, or near, Kc is the specific heat per
vertex c(K). For example, it is well-known that c(Kc) 3 log L for the 2D
square Ising model and, most likely, grows as Lz for some unknown expo-
nent z \ 0 in the 3D case. To obtain this quantity we need estimates of the
complete sequence of coefficients ai.

How can we obtain the specific heat c(K) from our data? Well, we
cannot necessarily do that. Note that what we have is

Kg(n) % K(n)=
1
k

log
ai

ai+k
, n=

i+k/2
m

,

where i and i+k are non-empty consecutive energy levels. That is, we have
only information on the quotients ai/ai+k. Of course, if our sampled data
include very high energy levels where we know the exact value of ai, we
may recover the entire sequence of ai. However, if our target system is, e.g.,
a cube of linear order 256 (for which we have used the method (10)) this will
indeed be an arduous task since it requires collecting data from some 107

energy levels. We should mention that the method described in ref. 21
suffers from the same problem and the authors offer the same conclusions.

On the other hand, the specific heat may not be as holy a grail as it at
first may seem. Consider instead the following derivation

c(K)=K2 “u
“K

=
K2

“K/“u
=

m
n

K2(n)
KŒ(n)

=
− (SŒ(n))2

Sœ(n)
,
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Fig. 10. The 64 × 64-lattice. Plots of Ra and R'

a versus n, for a=0, ± 2, ± 4.

where K=K(n). This holds only asymptotically and when K(n) is one-to-
one. Since K(n), and consequently SŒ(n), is well-behaved, even in the criti-
cal region, we could then rather focus on KŒ(n) or Sœ(n). The order with
which KŒ goes to zero is thus directly related to how fast the specific heat
grows to infinity. Working in this way we can achieve asymptotic results
for quantities parameterised by K, or T, as well by combining the asymp-
totics for K(n) and SŒ(n).

8.1. The Ising Model

Our first example will be the Ising model on the simple square
64 × 64-lattice. The model is solved exactly for the infinite case and we also
have exact data to rely upon for this particular case, i.e., we have the actual
coefficients ai, see ref. 15.

Recall that for the infinite case Kc=log(`2+1)/2 % 0.440687 and
nc=1/`2 % 0.707107. About 3 · 106 samples per energy level were collected
in the critical region. Three couplings were used, with the main run on
Kc=0.4406..., and two short runs at one value of K on each side of Kc.
The total runtime was 10 CPU days on a 333 MHz PowerPC-604.

Figure 10 shows a plot of the Ra functions and their second derivati-
ves. Had we compared K and Kg there would be no discernible difference,
even without any smoothing of data. In Fig. 11 we plot instead the first
and second derivative of Kg. Data are smoothed only slightly to let some
noise remain. The thin line is based upon exact data for the 64 × 64-lattice.

8.2. The Potts Model

In our second example we look at the 5-state Potts model on the L × L
square lattice. Here the spins can take the values 1, 2, 3, 4, 5 and the energy
of a state is defined as E(s)=;uv d(su, sv), where d is the Kronecker delta
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Fig. 11. The Ising model on the 64 × 64-lattice. First and second derivative of K (thin line)
and Kg versus n.

and the sum is, as usual, taken over all edges. The energy can take any
integer value in [0, m], rather than just multiples of 4. Also, the energy can
change by 0, ± 1, ± 2, ± 3, ± 4 when flipping a spin to a different state. We
define r(i, a) as the probability for changing the energy by a when flipping
a spin to a different value. Thus we have

ai

ai+a

=
r(i+a, −a)

r(i, a)
.

With Ra(i/m) defined as before, i.e., an estimate of r(i, a), we then have

Kg
a (n)=

1
a

log
R−a(n+a/2m)
Ra(n − a/2m)

,

which we, as before, mold into a single Kg. The critical coupling for the
q-state model is, quoting from ref. 22,

Kc=log(1+`q).

At this point a jump in the energy takes place between n− and n+. The
average of these we will refer to as the critical energy

nc=
n−+n+

2
=

1
2
11+

1

`q
2

and according to ref. 23 the latent heat for q \ 5, i.e., their difference, is

n ±=n+− n−=11+
1

`q
2 tanh

h

2
D
.

k=1
tanh2kh,
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Fig. 12. Left: K(n) for L=16, 32, 64, 128. Right: energy distribution for L=32 at K=
1.165, 1.167, 1.168, 1.1685, 1.169, 1.170, 1.171, 1.173.

where 2 cosh h=`q. For q=5 this gives Kc % 1.1744, nc % 0.7236 and
n ± % 0.02646. Also we have n− % 0.7104 and n+ % 0.7368. Let us see if the
sampling scheme at hand can provide some verification of this.

A short computer run was made for demonstrative, rather than ana-
lytical, purposes. In the critical region we collected roughly 3 · 106 mea-
surements per energy level for L=8, 106 for L=16, 3 · 105 for L=32, 105

for L=64 and only 104 for L=128. The runtime was about 30 CPU days
for L=128, about 15 CPU days for L=64, using a 333 Mhz PowerPC-
604. Three temperatures were used and in this case it is really necessary to
use more than one temperature in order to get enough samples over the
entire energy interval of interest.

Note the dip in the curve K(n) in the critical region in the left plot of
Fig. 12. This is a clear indication that we are looking at latent heat. Indeed,
as the right plot shows, we see a bimodal distribution of energies for some
values of K near Kc, and this is the true culprit. Before we continue, we
state the following definitions:

n−=min {n : KŒ(n)=0},

n+=max {n : KŒ(n)=0},

n ±=n+− n−,

where n ± will be our definition of latent heat. Our samples suggested the
data in Table I, where the error should be in the last decimal.

Let us return to the subject of energy distributions. Looking, for
example, at the distribution for K=1.1685, where the peaks are about
equal in height, we have a maximum at n=0.641 and n=0.761 and in
between lies a minimum at n=0.700. Looking at the left plot again we see
that the three energies where K(n)=1.1685 are 0.642, 0.700, and 0.761
respectively. Considering the fairly low precision in our data this is as close
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Table I. Critical Data for 5-State 2D Potts Model

L n− n+ K(n−) K(n+)

8 0.606 0.730 1.1374 1.1225
16 0.642 0.728 1.1625 1.1543
32 0.667 0.732 1.1710 1.1667
64 0.683 0.734 1.1736 1.1714

128 0.693 0.733 1.1743 1.1733

to a perfect match as makes no difference. Compare this with the quite
irrelevant average energy 0.709.

The distributions are clearly bimodal for K=1.168, 1.1685, 1.169 and
1.170. They are clearly not bimodal for 1.165 and 1.173. This is less clear
for 1.167 and 1.171. A closer scrutiny reveals that the distribution is
actually slightly bimodal for K=1.167 but it is not clear which category
1.1710 falls into. Ideally, the distributions should be bimodal for
K(n+) < K < K(n−) and since K(n−)=1.1710 we are obviously looking at a
case in point.

In the left plot of Fig. 13 we plot n+ and n− versus L−2/3. The straight
lines were fitted to the data for the three largest lattices. These are
0.710 − 0.435 x for n− and 0.734 − 0.020 x for n+, giving a spot-on candidate
for n− but a deviation from the correct n+ in the third decimal. Due to this
our latent heat will be asymptotically n ±=0.024 and nc=0.722, not
entirely off their correct values.

The right plot of Fig. 13 shows the couplings at the energies n− and n+

versus L−1. Unfortunately they seem to scale with different exponents
though if we choose the exponents 5/3 and 4/3 respectively, then we get
very nice fits. The curves are given by 1.1746 − 1.193 x5/3 and 1.1748 −
0.834 x4/3 and fit very well to the data points. The asymptotic values differ
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Fig. 13. Left: energies n− and n+ vs L−2/3. Right: couplings K(n−) and K(n+) vs L−1.
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slightly in the fourth decimal from each other and from the correct value
Kc % 1.1744, but what is to be expected from three decimals in the input?
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